Introduction to Mobile Game Development

Modern mobile phones are small computers, with limited processing power by desktop standards, but power enough to run a small game. If you have a recent phone, you have more processing power in your pocket than ran the Lunar Lander.

Today’s phones are also by their very nature networked computers, efficiently sending and receiving digital data. Primarily geared for voice data, they can send and receive other kinds of data as well. This inherent ability to share information offers a unique opportunity to design games wherein players interact with other players, perhaps even on the other side of the world.

In terms of processing power and capabilities, the current generation of Java™-enabled phones is close to the second generation of arcade machines, early 1990s home computers, and early handheld game machines. RAM is generally limited—typically 128 KB to 500 KB—although some smartphones, like Nokia 3650, have as much as 4 MB of memory. They also have, by comparison to PCs, limited input and display capabilities: small screens (many still black and white), keypads optimized for phone dialing rather than text entry, and limited sound handling.

What they lack in raw power they more than make up for in connectivity and sheer installed base. The vast majority of the world’s adult population owns a least one mobile phone, and Nokia expects to ship between 50 million and 100 million Java-enabled, full-color devices by the end of 2003.

A number of different technologies, listed below, are used for games on mobile phones. Eirplay uses the 3rd one.

2.1 Embedded Games

Some games are programmed to run natively on a phone’s chipset, installed on the phone at the factory, and shipped with it. Snake, available on many Nokia phones for more than four years, is the most famous example. New embedded games cannot be installed by the consumer, and they are becoming less prevalent.

2.2 SMS Games

Short Message Service (SMS) is used to deliver short text messages from one phone to another. Users typically pay about 10 cents per message. SMS games are played by sending a message to a phone number that corresponds to the game provider’s server, which receives the messages, performs some processing, and returns a message to the player with the results.

SMS is not a particularly good technology for games, because it is dependent on text entry by the user, and thus is, in essence, a command-line environment. It is also expensive for a game of any depth, since a mere 10 exchanges with the server will cost a user $1 or more. Although the deployment of Multimedia Message Service (MMS) technology makes message-based games more appealing, this is still not a great gameplay environment and will not be explored here.

2.3 Browsing (WAP) Games

Just about every phone shipped since 1999 includes a Wireless Application Protocol (WAP) browser. WAP is, in essence, a static browsing medium, much like a vastly simplified form of the Web, optimized for the small form factors and low bandwidth of mobile phones.

Either version of WAP offers a friendlier interface than SMS, and is generally less expensive for consumers who pay for airtime only, rather than by the message. But it is a static browsing medium; little or no processing can be done on the phone itself, and all gameplay must be over the network, with all processing performed by a remote server.

Most game developers are moving to the richer capabilities of the J2ME (Java) platform.

2.4 J2ME (Java) –

Java 2 Micro Edition (J2ME) is a form of the Java language that is optimized for small devices such as mobile phones and PDAs. Nokia (and most other phone manufacturers) have made a strong commitment to Java phone deployment. Tens of millions of Java-enabled phones are already in consumers’ hands.

J2ME is limited by comparison to desktop (for PCs) Java, but it vastly improves the ability of mobile phones to support games. It allows far better control over the interface than either SMS or WAP, allows sprite animation, and can connect over the air network to a remote server.

Because of its capabilities and the widespread and growing deployment of Java-enabled phones, it is a natural for mobile game development today.

J2ME (Java) is not the only programming language deployed on phones, but it is an industry standard backed by many manufacturers and therefore offers a large and growing installed base. Some programming languages have significant regional presence, including Qualcomm’s Binary Runtime Environment for Wireless (BREW) in North American and a standard called GVM supported by some Korean carriers. Games initially developed for the large J2ME installed base can be recoded in these other languages if a sound business case presents itself.

Mobile game development differs from conventional (PC and PlayStations) game development in a number of ways.

3.1 Team Size

Conventional PC and console games typically require teams of 12 to 30 people. Because most mobile games are less extensive than their console counterparts, they are typically developed by teams of 3 to 5 people, and often by lone programmers/designers.

3.2 Budget

Conventional games have budgets in the $1.5 million to $5 million range. Most mobile games are implemented on budgets of less than $100,000. Essentially, the limited display capabilities of mobile phones, coupled with limitations on application size, make it difficult to spend the huge amounts devoted to conventional games. This is, in a way, a strong advantage.

3.3 Development Cycle

Conventional games typically take two to three years to develop. Most mobile games are developed in a few months. In other words, with a small team, and a small budget, you can develop and deploy a professional-quality mobile game. For many developers, frustrated by the conditions of the conventional game market, it is one of mobile game development’s strongest appeals.

3.4 Networked Devices

Mobile games can be unlike any games we’ve seen before: limited in terms of media, but networked and multiplayer. Modems for PCs have been widely deployed only for the last eight years or so; consoles are only now going online. Mobile phones are networked devices by their very nature. Even though their processing capabilities are reminiscent of older computing technologies, their network capabilities are far superior.

3.5 Open Standards

Console development requires authorization and support from console game manufacturers, who use their control to require high “platform royalties” from game publishers, and to control what sorts of games get developed for their hardware. In the world of wireless (as in PC game development), you are free to develop whatever sorts of games you like, without paying Nokia, Sun, or anyone else.

3.6 Deployment

Conventional games are (mostly) purchased in software outlets. Mobile games are (mostly) downloaded and installed by the user. In most cases, they are downloaded over the air network; some phones allow you to download an application to a computer, then hotsynch (send) it to the phone. Consequently, the distribution channels for mobile games are quite different.

Strengths of the Medium

4.1 Huge Potential Audience

More than a billion mobile phones are in use today, and the number is growing. In every developed country except the United States, a higher proportion of the population owns a mobile phone than owns a computer. While only a small portion of those phones are Java-enabled, and an even smaller number run an OS, the numbers are increasing rapidly, and within a few years, Java phones will be the norm. Your potential audience is larger than the potential market for any other platform—Playstation and GameBoy included.

4.2 Portability

There’s a reason that GameBoy has sold more units than any other game console ever manufactured: portability is prized. People like being able to play whenever and wherever they choose. A phone may not be a great game device by comparison to modern consoles or computers, but people have their phones with them almost all the time. Give them good games to play when out of the home, and they will play.

Business Model – Mobile Games Market

Designers of conventional games generally deal with fairly stable platforms and well-established business models. In wireless gaming, technology is changing rapidly, and business models are still evolving. Some of the preconceived ideas about games, based on these older models, don’t apply to wireless, or at least not to the same degree:

Value Chain



Developer>
Aggregator >

Operator >

Consumer

(Eirplay)
(nGame,Trust5)
(O2,Vodefone)
Revenue Share is the reality of life. This means that a developer get between 15% to 40% of the end price that the consumer pays. Mobile Games on average cost between €2.50 and €5 each.



Market size

Market research group Analysis said western European mobile operators (02/Vodefone) would see sales of mobile games swell more than 10-fold to 3bn euros (£1.9bn) in 2005 from 255m euros this year.

Mobile games offer the greatest prospects in the short term," the Cambridge-based group said. Games are expected to account for a large part of non-voice services, which mobile operators are keen to expand to offset pressure on revenues from voice calls due to heavy competition.

Other non-voice services include text messaging, expected to generate 11.4bn euros among European carriers in 2002. Voice revenues generate around 89.5bn euros.

Operators across Western Europe are currently introducing arcade-type games that can be downloaded to mobile handsets. O2, a unit of Britain's mmO2, offers a range of Atari games for around £1.50 per download.

Consumers need special handsets with large colour displays and a java software engine to play these games, which have only been launched in Europe in the last six months. Some 60 percent of handsets will be java-enabled by late 2005.

In Japan, where java handsets were introduced in early 2001, some 43 percent of NTT DoCoMo's (a Japanese mobile operator) 35.2 million subscribers are now using downloaded java services. Most handsets come with a few games installed, but operators do not earn anything on these.

Marketing our Games

There are several avenues to explore as you prepare to market our game. There are the device manufacturers (companies such as Nokia, Ericcson, Motorola, Siemens, Samsung, and Sanyo), the service providers (mobile operators/carriers), and a mixed bag of companies that fall into the general category of aggregators.
1. Device Manufacturers
They are always on the hunt for outstanding wireless game applications and they have set up developer sites to make sure the cream rises to the top. You can sign up on the Web to join their development programs. Each vendor/device manufacturer puts its own spin on the developer/manufacturer relationship, but, in general, you can download an game development kit, receive support, go to conferences, enter chat rooms, and even test and certify your game

2. The Carriers/Mobile Operators
"It's even harder to make contact with the carriers," Crowley adds. "You need to attend trade show after trade show such as E3 Expo, CTIA and Java ONE-in fact, every show where key industry people are likely to gather, including conferences that are not strictly focused on Java technology."

3. Aggregators
Both Crowley and Wilson agree that the aggregator route is the preferred path to marketing your game. The upside is that the aggregators already have in place the networks and the distribution channels that you need. The downside is that they take a big chunk of the profits-up to 75 percent.

A few aggregator examples:

· Tira Wireless, a J2ME application provider to the carriers, has a Developer's program that asks only that you submit your game to them. If they accept your offering, they take care of the rest-certification, end user support, basic localization, provisioning, branding, marketing and sales.

· nGame is looking for developers both to develop their own original game ideas and to implement games based on designs that it provides. The company says its titles are now distributed throughout the world with over 500,000 registered players.

· Digital Bridges has established a global developer community for mobile entertainment. It's UNITY program provides an SDK and Java-based APIs for developing applications.

They either sell games to mobile operators, or directly themselves or to 3rd parties.

